Structural Health Monitoring and Damage Detection through Machine Learning approaches
نویسندگان
چکیده
منابع مشابه
Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملAutomated Structural Damage Detection Using One-Class Machine Learning
Data driven SHM methodologies take raw signals obtained from sensor networks, and process them to obtain features representative of the condition of the structure. New measurements are then compared with baselines to detect damage. Because damage-sensitive features also exhibit variation due to environmental and operational changes, these comparisons are not always straightforward and an automa...
متن کاملDamage Detection with Streamlined Structural Health Monitoring Data
The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems' capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an...
متن کاملAggressive Data Reduction for Damage Detection in Structural Health Monitoring
While wireless sensors are increasingly adopted in various applications, the need of developing data reduction methods to alleviate data transmission rate issue between the sensors and the data interpretation unit becomes more urgent. This article presents a new data reduction method for sensors used in structural health monitoring application. Our goal is to achieve an effective data reduction...
متن کاملThe application of machine learning to structural health monitoring.
In broad terms, there are two approaches to damage identification. Model-driven methods establish a high-fidelity physical model of the structure, usually by finite element analysis, and then establish a comparison metric between the model and the measured data from the real structure. If the model is for a system or structure in normal (i.e. undamaged) condition, any departures indicate that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S Web of Conferences
سال: 2020
ISSN: 2267-1242
DOI: 10.1051/e3sconf/202022001096